Theoremata Utilia ad Calculum Probabilitatum

Theoremata Utilia ad Calculum Probabilitatum

Theoremata Utilia ad Calculum Probabilitatum

Summarium
In hac lectione proponuntur exercitationes resolutae quibus demonstrantur nonnulla theoremata utilia ad calculum probabilitatum, cum demonstrationibus et deductionibus. Exercitationes tractant argumenta ut probabilitas complementaria, inclusio insectorum et convergentia eventuum. Has exercitationes perficere tibi praebebit firmam basim ad altius studium theoriae probabilitatum persequendum.


OBJECTIVA DISCENDI:
His peractis lectionibus discipulus poterit:

  1. Demonstrari proprietates fundamentales probabilitatum

Quae infra videbimus est dux exercitationum (resolutarum) quarum propositum est demonstrare nonnulla theoremata utilia ad theoriam probabilitatum. Experire eas solvere et postea compara tua responsa >:D

  1. Demonstra P(A^c) = 1 -P(A) et, ex hoc fac deductionem quae sinat arguere P(\emptyset) = 0
    MOSTRAR SOLUCIÓN

    Ex definitione mensurae probabilitatis habetur quod, si A et B sunt eventus mensurabiles quicumque, tum valebit

    [a]0\leq P(A) \leq 1
    [b]A\cap B = \emptyset \rightarrow P(A\cup B) = P(A) + P(B)
    P(\Omega) = 1

    Nunc, cum A\cap A^c = \emptyset, ex parte [b], habebitur:

    [d]A\cap A^c = \emptyset \rightarrow P(A\cup A^c) = P(A) + P(A^c)

    Cum A\cap A^c = \emptyset semper verum sit et A\cup A^c = \Omega, tum habebitur

    1=P(\Omega) = P(A\cup A^c) = P(A) + P(A^c)

    Et, proinde

    P(A^c) = 1-P(A)

    Quod erat demonstrandum.

    Ad demonstrandum P(\emptyset)=0, sufficit sumere A=\Omega in relatione nuper probata et habebitur

    P(\emptyset) = P(\Omega^c) =1 - P(\Omega) = 1-1 = 0

  2. a) Demonstra A\subseteq B \rightarrow P(B\setminus A) = P(B) - P(A),num aequalitas in universum vera est?b) Demonstra A\subseteq B \rightarrow P(B)\leq P(A)MOSTRAR SOLUCIÓN a)
    (1)A\subseteq B; Praemissa
    \equiv A\cap B = A
    (2)B\setminus A = B\cap A^c; Definitio Theor. Coniunctorum
    (3)B= (B\cap A) \cup (B\cap A^c); Proprietas coniunctorum
    (4)(B\cap A)\cap (B\cap A^c)=\emptyset; Proprietas coniunctorum
    (5)P(B)= P[(B\cap A) \cup (B\cap A^c)]; Ex (3)
    P(B)= P (B\cap A) + P(B\cap A^c); Ex (4) + Def. Mensurae Probabilitatis
    P(B)= P (B\cap A) + P(B\setminus A); Ex (2)
    P(B\setminus A) =P(B) - P (B\cap A)
    {P(B\setminus A) =P(B) - P (A) }; Ex (1)

    Itaque {\{A\subseteq B\}\vdash P(B\setminus A) = P(B) - P(A)}.

    Animadvertamus hanc aequalitatem non universaliter veram esse, quoniam pendet ex eo quod A\subseteq B sit ad obtinendum. Ex his deductionibus videri potest quod, si hoc non impletur, tum habebitur P(B\setminus A) = P(B) - P(A\cap B).

    MOSTRAR SOLUCIÓN b)

    Ex iis quae in a) rationata sunt habetur:

    \{A\subseteq B\}\vdash P(B\setminus A) = P(B) - P(A)
    \equiv \{A\subseteq B\}\vdash P(A) + P(B\setminus A) = P(B)

    Denique, cum P sit mensura probabilitatis, habetur \forall X (P(X)\geq 0), ita ut, proinde:

    {\{A\subseteq B\}\vdash P(A) \leq P(B)}.

     

  3. a) Demonstra P(A\cup B) = P(A) + P(B) - P(A\cup B). Comitetur demonstrationem cum diagrammate.b) Utendo priori resultado demonstra P(A\cup B) \leq P(A) + P(B)MOSTRAR SOLUCIÓN PARTE a)
    (1)A\cup B = (A\triangle B) \cup (A\cap B); Proprietas coniunctorum
    (2)A\triangle B := (A\setminus B) \cup (B\setminus A); Definitio differentiae symmetricae
    (3)(A\triangle B)\cap ( A \cap B) = \emptyset; proprietas coniunctorum
    (4)(A\setminus B)\cap (B\setminus A) = \emptyset; proprietas coniunctorum
    (5)P(A\cup B) = P[(A\triangle B) \cup (A\cap B)]; Ex (1)
    P(A\cup B) = P(A\triangle B) + P(A\cap B)]; Ex (3)
    P(A\cup B) = P(A\setminus B) + P(B\setminus A) + P(A\cap B)]; Ex (2,4)
    (6)P(B\setminus A) = P(B) - P(A\cap B); Applicando eventus exercitationis 2
    (7)P(A\setminus B) = P(A) - P(A\cap B); Idem quod (6)
    (8)P(A\cup B) = P(A) - P(A\cap B) + P(B) - P(A\cap B) + P(A\cap B); ex (5,6,7)
    {P(A\cup B) = P(A) + P(B) - P(A\cap B)}.
    MOSTRAR SOLUCIÓN PARTE b)
    \vdash P(A\cup B) = P(A) + P(B) - P(A\cap B); eventus partis a)
    \equiv\; \vdash P(A\cup B) + P(A\cap B) = P(A) + P(B)
    \equiv\; \vdash {P(A\cup B) \leq P(A) + P(B)}

     

  4. Si \{E_n\} est familia infinita eventuum talis ut E_1\supseteq E_2 \supseteq E_2 \supseteq \cdots \supseteq E_n \supseteq E_{n+1}\supseteq \cdots. Demonstra verum esse

    \displaystyle P\left( \bigcap_{n=1}^\infty E_n \right) = \lim_{n\to \infty}P(E_n) MOSTRAR SOLUCIÓN

    (1)E_n \supseteq E_{n+1}; Hypothesis
    (2)E_n^c \subseteq E_{n+1}^c; Per complementum ex (1)
    (3)\displaystyle(E_n^c \subseteq E_{n+1}^c) \rightarrow P\left( \bigcup_{n=1}^\infty E_n^c \right)= \lim_{n\to\infty}P(E_n^c); Proprietas Continuitatis
    (4)\displaystyle \bigcup_{n=1}^\infty E_n^c = \left( \bigcap_{n=1}^\infty E_n \right)^c; Leges DeMorgan
    (5)P\left(E_n^c\right) = 1 - P(E_n); Demonstratum in exercitio 1
    (6)\displaystyle P\left(\left[ \bigcap_{n=1}^\infty E_n\right]^c \right) = \lim_{n\to\infty}[1-P(E_n)] = 1 - \lim_{n\to\infty}P(E_n); ex (2,4,5) applicatum super (3)
    \displaystyle 1 - P\left( \bigcap_{n=1}^\infty E_n \right) = 1 - \lim_{n\to\infty}P(E_n)
    {\displaystyle P\left( \bigcap_{n=1}^\infty E_n \right) = \lim_{n\to\infty}P(E_n)}

    \displaystyle\therefore\{E_n \supseteq E_{n+1}\}\vdash P\left( \bigcap_{n=1}^\infty E_n \right) = \lim_{n\to\infty}P(E_n).

     

His exercitationibus resolutis primum fundamentum perficies quod tibi erit sustentaculum ad prosequendum studium theoriae probabilitatum.

Views: 0

Leave a Reply

Your email address will not be published. Required fields are marked *