Formula Stirlingiana

Formula Stirlingiana

Formula Stirlingiana

Formula Stirlingiana est instrumentum essentiale ad computationes cum factorialibus numerorum magnorum simplificandas, approximationem rapidam et practicam offerens.

Hoc inventum praesertim utile est in campis sicut thermodynamica, probabilitas et analysis asymptotica, ubi cum numeris ingentibus operari frequens est. Intellegere eius evolutionem non solum applicationem facilitat, sed etiam sinit aestimare eius momentum in calculo efficaci atque in solutione problematum complexorum.

Proposita Discendi:
Peracta hac lectione discipulus poterit

  1. Intelligere deductionem formulae Stirlingianae ex definitione factorialis per functionem Gamma.
  2. Applicare formulam Stirlingianam ad approximanda factorialia numerorum permagnorum.
  3. Computare approximationes logarithmicas factorialium per instrumenta elementaria logarithmorum et exponentium.

INDEX CONTENTORUM:
Demonstratio formulae Stirlingianae
Approximatio logarithmica factorialis
Exemplum: Approximatio Factorialis Numeri Permagni

Demonstratio formulae Stirlingianae

Evolutio formulae Stirlingianae incipit a definitione factorialis per functionem Gamma, quae est:

n! =\Gamma(n+1) = \displaystyle \int_0^\infty t^n e^{-t} \, dt

Hac hac expressione utentes, mutationem variabilis facimus: t = nx. Hoc implicat x \in [0, \infty[ et dt = n dx. Hoc mutato, integra mutatur hoc modo:

n! = \Gamma(n+1) = \displaystyle \int_0^\infty (nx)^n e^{-nx} n \, dx = n^{n+1} \int_0^\infty x^n e^{-nx} dx

Deinde, secundam mutationem variabilis facimus: x = 1 + \dfrac{s}{\sqrt{n}}. Hoc implicat:

\begin{array}{rl} & s = (x-1)\sqrt{n}, \quad s \in [-\sqrt{n}, \infty[ \\ \\ & dx = \dfrac{ds}{\sqrt{n}} \end{array}

Hoc mutato, integra hanc formam accipit:

\begin{array}{rl} n! = \Gamma(n+1) &= \displaystyle n^{n+1} \int_{-\sqrt{n}}^\infty \left( 1 + \dfrac{s}{\sqrt{n}} \right)^n e^{-n\left(1+\dfrac{s}{\sqrt{n}}\right)} \dfrac{ds}{\sqrt{n}} \\ \\ &= \displaystyle \dfrac{n^{n+1}}{\sqrt{n}} \int_{-\sqrt{n}}^\infty e^{n\ln\left( 1 + \dfrac{s}{\sqrt{n}} \right)} e^{-n - s\sqrt{n}} ds \\ \\ &= \displaystyle n^n e^{-n} \sqrt{n} \int_{-\sqrt{n}}^\infty e^{n\ln\left(1+\dfrac{s}{\sqrt{n}}\right) - s\sqrt{n}} ds \end{array}

Nunc expansionem in seriem Taylor pro logaritmo naturali adhibemus:

\ln(1+x) = \displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^{k+1}x^k}{k}

Cum hanc expansionem adhibeamus in \ln\left(1+\dfrac{s}{\sqrt{n}}\right), expressionem exponentialem sic evolvimus:

\begin{array}{rl} n\ln\left(1+\dfrac{s}{\sqrt{n}}\right) - s\sqrt{n} & = \displaystyle n \left[\sum_{k=1}^{\infty} \dfrac{(-1)^{k+1}\left(\dfrac{s}{\sqrt{n}} \right)^k}{k} \right] - s\sqrt{n} \\ \\ & = n \left[ \dfrac{s}{\sqrt{n}} - \dfrac{s^2}{2n} + \dfrac{s^3}{3n\sqrt{n}} - \dfrac{s^4}{4n^2} + \dfrac{s^5}{5n^2\sqrt{n}} \cdots \right] - s\sqrt{n} \\ \\ & = s\sqrt{n} - \dfrac{s^2}{2} + \dfrac{s^3}{3\sqrt{n}} - \dfrac{s^4}{4n} + \dfrac{s^5}{5n\sqrt{n}} \cdots - s\sqrt{n} \\ \\ & = - \dfrac{s^2}{2} + \dfrac{s^3}{3\sqrt{n}} - \dfrac{s^4}{4n} + \dfrac{s^5}{5n\sqrt{n}} \cdots \\ \\ & = - \dfrac{s^2}{2} + \displaystyle \sum_{k=3}^\infty \dfrac{(-1)^{k+1}s^k}{k\sqrt{n^{k-2}}} \end{array}

Itaque totam expressionem scribere possumus hoc modo:

n! = \Gamma(n+1) = \displaystyle n^n e^{-n} \sqrt{n} \int_{-\sqrt{n}}^\infty e^{- \dfrac{s^2}{2} + \displaystyle \sum_{k=3}^\infty \dfrac{(-1)^{k+1}s^k}{k\sqrt{n^{k-2}}}} ds

Hoc inventum fundamentale est ad computanda factorialia numerorum permagnorum. Dum n crescit, termini in summa intra exponentialem ad nihilum tendunt, relinquentes solum terminum dominantem. Hoc integralem simplificat, quae ut integra Gaussiana resolvi potest:

n! = \Gamma(n+1) \approx \displaystyle n^n e^{-n} \sqrt{n} \int_{-\infty}^\infty e^{- \frac{s^2}{2}} ds = n^n e^{-n} \sqrt{n} \sqrt{2\pi}

Hoc inventum notum est ut formula Stirlingiana pro factoriali numerorum magnorum:

\boxed{n! \approx \sqrt{2\pi n}\left(\dfrac{n}{e}\right)^{n}}

Approximatio logarithmica factorialis

Effectus directus formulae Stirlingianae est approximatio logarithmica factorialis. Cum logarithmum naturalem formulae Stirlingianae capimus, obtinemus:

\begin{array}{rcl} \ln(n!) \approx \ln\left( \sqrt{2n\pi}\left(\dfrac{n}{e}\right)^{n} \right) &=& \dfrac{1}{2}\ln(2n\pi) + n\ln\left(\dfrac{n}{e}\right) \\ \\ &=& \dfrac{1}{2}\ln(2n\pi) + n\ln(n) - n \\ \\ &\approx & n\ln(n) - n \end{array}

In ultimo passu, fit ulterior approximatio, dum terminus \dfrac{1}{2}\ln(2n\pi) negligitur. Hic terminus evanescit respectu n\ln(n) - n pro valoribus magnis n.

Validitas huius approximationis iustificatur computando errorem relativum inter utrasque expressiones:

\begin{array}{rcl} \text{Approximatio Initialis} & = & \dfrac{1}{2}\ln(2n\pi) + n\ln(n) - n \\ \\ \text{Approximatio Finalis} & = & n\ln(n) - n \\ \\ \text{Error Relativus} &=& \dfrac{\text{Approximatio Finalis} - \text{Approximatio Initialis}}{\text{Approximatio Initialis}} \\ \\ &=& \dfrac{-\dfrac{1}{2}\ln(2n\pi)}{\dfrac{1}{2}\ln(2n\pi) + n\ln(n) - n} \end{array}

Computando limitem cum n \to \infty:

\begin{array}{rl} \displaystyle \lim_{n\to\infty} \text{Error Relativus} & = \displaystyle \lim_{n\to\infty} \dfrac{-\dfrac{1}{2}\ln(2n\pi)}{\dfrac{1}{2}\ln(2n\pi) + n\ln(n) - n} \\ \\ & = \displaystyle \lim_{n\to\infty} \dfrac{-\dfrac{1}{2n}}{\dfrac{1}{2n} + \ln(n) + 1 - 1} = 0 \end{array}

Quare, cum error ad nihilum tendat pro valoribus magnis n, sequenti approximatione logarithmica tuto uti possumus:

\boxed{\ln(n!) \approx n\ln(n) - n}

Exemplum: Approximatio Factorialis Numeri Permagni

Computare factorialia numerorum immensissime magnorum, sicut 10.000!, fere impossibile est instrumentis communibus propter magnitudinem resultati. Attamen, utens approximatione logarithmica factorialis ex formula Stirlingiana deducta, id tractabile redditur etiam cum calculatoribus simplicibus.

Formula logarithmica factorialis nobis dicit:

\ln(10.000!) \approx 10.000 \ln(10.000) - 10.000

Ad convertendum ex logarithmis naturalibus (\ln) ad logarithmos basi 10 (\log), relatione utimur:

\ln(10.000!) = \dfrac{\log(10.000!)}{\log(e)}

Hoc implicat:

\log(10.000!) \approx \log(e) \cdot (10.000 \ln(10.000) - 10.000)

Quare:

10.000! \approx 10^{\log(e) \cdot (10.000 \ln(10.000) - 10.000)} \approx 10^{35.657,06}

Hic animadvertimus expressionem in exponente tractabilem fieri pro plurimis calculatoribus. Ita, quamvis numerum videre non possimus ob immensam eius magnitudinem, scimus eum circiter 35.657 cifras continere. Hoc consilium computationem apparenter inaccessibilem in rem peragendam convertit.

Views: 0

Leave a Reply

Your email address will not be published. Required fields are marked *